biss boutiques-francophones Simple and secure cloud storage vpcflyout Furniture All-New Kindle Paperwhite Explore the Amazon.ca Vinyl LP Records Store Exercice Tools ca_ty_gno

Vous voulez voir cette page en français ? Cliquez ici.


or
Sign in to turn on 1-Click ordering.
More Buying Choices
Have one to sell? Sell yours here
Tell the Publisher!
I'd like to read this book on Kindle

Don't have a Kindle? Get your Kindle here, or download a FREE Kindle Reading App.

Information Theory, Inference and Learning Algorithms [Paperback]

David J. C. MacKay
4.5 out of 5 stars  See all reviews (4 customer reviews)
Price: CDN$ 102.95 & FREE Shipping. Details
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Only 1 left in stock (more on the way).
Ships from and sold by Amazon.ca. Gift-wrap available.
Want it delivered Friday, February 12? Choose One-Day Shipping at checkout.
‹  Return to Product Overview

Table of Contents

1. Introduction to information theory; 2. Probability, entropy and inference; 3. More about inference; Part I. Data Compression: 4. The source coding theorem; 5. Symbol codes; 6. Stream codes; 7. Codes for integers; Part II. Noisy-Channel Coding: 8. Dependent random variables; 9. Communication over a noisy channel; 10. The noisy-channel coding theorem; 11. Error-correcting codes and real channels; Part III. Further Topics in Information Theory: 12. Hash codes; 13. Binary codes; 14. Very good linear codes exist; 15. Further exercises on information theory; 16. Message passing; 17. Constrained noiseless channels; 18. Crosswords and codebreaking; 19. Why have sex? Information acquisition and evolution; Part IV. Probabilities and Inference: 20. An example inference task: clustering; 21. Exact inference by complete enumeration; 22. Maximum likelihood and clustering; 23. Useful probability distributions; 24. Exact marginalization; 25. Exact marginalization in trellises; 26. Exact marginalization in graphs; 27. Laplace's method; 28. Model comparison and Occam's razor; 29. Monte Carlo methods; 30. Efficient Monte Carlo methods; 31. Ising models; 32. Exact Monte Carlo sampling; 33. Variational methods; 34. Independent component analysis; 35. Random inference topics; 36. Decision theory; 37. Bayesian inference and sampling theory; Part V. Neural Networks: 38. Introduction to neural networks; 39. The single neuron as a classifier; 40. Capacity of a single neuron; 41. Learning as inference; 42. Hopfield networks; 43. Boltzmann machines; 44. Supervised learning in multilayer networks; 45. Gaussian processes; 46. Deconvolution; Part VI. Sparse Graph Codes; 47. Low-density parity-check codes; 48. Convolutional codes and turbo codes; 49. Repeat-accumulate codes; 50. Digital fountain codes; Part VII. Appendices: A. Notation; B. Some physics; C. Some mathematics; Bibliography; Index.

‹  Return to Product Overview