Vous voulez voir cette page en français ? Cliquez ici.

Sign in to turn on 1-Click ordering.
Amazon Prime Free Trial required. Sign up when you check out. Learn More
More Buying Choices
Have one to sell? Sell yours here
Tell the Publisher!
I'd like to read this book on Kindle

Don't have a Kindle? Get your Kindle here, or download a FREE Kindle Reading App.

Tensor Calculus and Analytical Dynamics [Hardcover]

John G. Papastavridis

List Price: CDN$ 167.73
Price: CDN$ 113.16 & FREE Shipping. Details
You Save: CDN$ 54.57 (33%)
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Only 1 left in stock (more on the way).
Ships from and sold by Amazon.ca. Gift-wrap available.
Want it delivered Monday, March 9? Choose One-Day Shipping at checkout.
‹  Return to Product Overview

Inside This Book (Learn More)
First Sentence
Tensor calculus (TC) is a branch of geometry that allows us to formulate geometrical and physical theorems (usually as differential equations) in terms of general, i.e., curvilinear, coordinates and components of the pertinent quantities, that are independent, or form invariant, of the particular system of coordinates used for their descriptions -- hence its older name: absolute differential calculus. Read the first page
Browse Sample Pages
Front Cover | Copyright | Table of Contents | Excerpt | Index | Back Cover
Search inside this book:

Concordance (Learn More)
These are the most frequently used words in this book.
above  absolute  ad  ail  ak  akk  al  along  basis  between  called  case  chapter  christoffels  coefficients  components  conditions  constant  constraints  contravariant  coordinates  cos  covariant  cs  differential  dq  dqk  dt  0  0  ea  ek  el  equations  er  etc  example  finally  find  first  following  forces  form  functions  fundamental  general  gk  gkl  holonomic  ii  ik  independent  indices  invariant  kinetic  let  manifold  mechanics  metric  motion  nh  nonholonomic  normal  now  number  obtain  particle  point  pp  problem  qk  recalling  relative  results  section  see  show  similarly  sin  since  space  sum  surface  system  tangent  tensor  terms  theorem  therefore  time  tk  transformation  two  uk  variables  vector  velocity  vi  vk  yields 
‹  Return to Product Overview