Your rating(Clear)Rate this item

- The Thirteen Books of the Elements, Vol. 1
- ›
- Customer Reviews

Your rating(Clear)Rate this item

2 people found this helpful

ByKhalifa Alhazaaon May 1, 2003

I am pretty much interested in geometry. I am, in fact, enthusiastic, and enthusiastic people usually do have strange habits regarding their subjects of enthusiasm. I, for one, like to buy all of the geometry books I can lay my hand on regardless of its relevance to my studies or usefulness for reading.

And this book, being a classic, was on top of my demanded books list until I bought it around 1998. As usual with these books, I postponed its reading until the new millennium. But when I read it I was very disappointed.

The material of this book is one of the most beautiful afforded by a mathematics book. It is very interesting, but, alas, it is written in a forbidding notation. I can understand high level math books in Algebra and Analysis, but this book confused me with words. Frankly, I do not see why a math book is supposed to explained in words after all this development of mathematics.

Unfortunately, most historian mathematicians disagree with my view. They see that writing the elements of Euclid (The first rigorous set of axioms and lemmas) in the modern notation is unfaithful to the original manuscript. Well, I have got no problem with that, but at least try to make it up to date so that people could go through it.

You see that I gave it 4 stars. Yes the material of the book was excellent, and it rather deserved 5 stars, but for this tedious presentation.

One other thing I hated a bout this volume was the introduction. It had taken about one third of the book, and after the definitions of the first book, there are notes on the definitions and postulates that take another third of the book. These notes are not all that easy and at a higher level than the postulates of Euclid, and I found them irrelevant. I do not understand here why did not the author, who made notes on the definitions, make a section explaining all the postulates in modern notation.

As for the material, the volume covers Books I and II of Euclid's 13 books of the elements. The first book introduces a set of definitions and goes on characterizing triangles. It, even, proves the Pythagorean theorem. This proof was a bit difficult, a simpler proof can be found else where, but, after all, it is amazing how mathematicians could have solved such a problem thousands of years ago.

He introduced the famous constructions of straight edge and a compass, he would construct an isosceles triangle starting from a given segment by merely using a straight edge and a compass. Later on, Galois studied this construction in his famous Galois theory (try Artin's Galois theory, although I do not guarantee it).

The second books deals with areas of triangles and rectangles, and Euclid's notation shows it incompetence when he uses the same name for two different things. For in the first book he used to say that two triangles are equal if all their angles and sides are equal, but in the second book he would define two triangles to be equal if they had the same area!

All in all, I enjoyed the book, and would have enjoyed it more if not for the drawbacks.

And this book, being a classic, was on top of my demanded books list until I bought it around 1998. As usual with these books, I postponed its reading until the new millennium. But when I read it I was very disappointed.

The material of this book is one of the most beautiful afforded by a mathematics book. It is very interesting, but, alas, it is written in a forbidding notation. I can understand high level math books in Algebra and Analysis, but this book confused me with words. Frankly, I do not see why a math book is supposed to explained in words after all this development of mathematics.

Unfortunately, most historian mathematicians disagree with my view. They see that writing the elements of Euclid (The first rigorous set of axioms and lemmas) in the modern notation is unfaithful to the original manuscript. Well, I have got no problem with that, but at least try to make it up to date so that people could go through it.

You see that I gave it 4 stars. Yes the material of the book was excellent, and it rather deserved 5 stars, but for this tedious presentation.

One other thing I hated a bout this volume was the introduction. It had taken about one third of the book, and after the definitions of the first book, there are notes on the definitions and postulates that take another third of the book. These notes are not all that easy and at a higher level than the postulates of Euclid, and I found them irrelevant. I do not understand here why did not the author, who made notes on the definitions, make a section explaining all the postulates in modern notation.

As for the material, the volume covers Books I and II of Euclid's 13 books of the elements. The first book introduces a set of definitions and goes on characterizing triangles. It, even, proves the Pythagorean theorem. This proof was a bit difficult, a simpler proof can be found else where, but, after all, it is amazing how mathematicians could have solved such a problem thousands of years ago.

He introduced the famous constructions of straight edge and a compass, he would construct an isosceles triangle starting from a given segment by merely using a straight edge and a compass. Later on, Galois studied this construction in his famous Galois theory (try Artin's Galois theory, although I do not guarantee it).

The second books deals with areas of triangles and rectangles, and Euclid's notation shows it incompetence when he uses the same name for two different things. For in the first book he used to say that two triangles are equal if all their angles and sides are equal, but in the second book he would define two triangles to be equal if they had the same area!

All in all, I enjoyed the book, and would have enjoyed it more if not for the drawbacks.

2 people found this helpful

ByA customeron April 17, 2004

If you like long, tedious introductions and the need to sort through endless words to find what you're looking for, then you might want this version of Euclid's work. On the other hand, if you want to get to the point and prefer a clear resource for study, the version published by Green Lion is FAR superior to this one.

ByKhalifa Alhazaaon May 1, 2003

I am pretty much interested in geometry. I am, in fact, enthusiastic, and enthusiastic people usually do have strange habits regarding their subjects of enthusiasm. I, for one, like to buy all of the geometry books I can lay my hand on regardless of its relevance to my studies or usefulness for reading.

And this book, being a classic, was on top of my demanded books list until I bought it around 1998. As usual with these books, I postponed its reading until the new millennium. But when I read it I was very disappointed.

The material of this book is one of the most beautiful afforded by a mathematics book. It is very interesting, but, alas, it is written in a forbidding notation. I can understand high level math books in Algebra and Analysis, but this book confused me with words. Frankly, I do not see why a math book is supposed to explained in words after all this development of mathematics.

Unfortunately, most historian mathematicians disagree with my view. They see that writing the elements of Euclid (The first rigorous set of axioms and lemmas) in the modern notation is unfaithful to the original manuscript. Well, I have got no problem with that, but at least try to make it up to date so that people could go through it.

You see that I gave it 4 stars. Yes the material of the book was excellent, and it rather deserved 5 stars, but for this tedious presentation.

One other thing I hated a bout this volume was the introduction. It had taken about one third of the book, and after the definitions of the first book, there are notes on the definitions and postulates that take another third of the book. These notes are not all that easy and at a higher level than the postulates of Euclid, and I found them irrelevant. I do not understand here why did not the author, who made notes on the definitions, make a section explaining all the postulates in modern notation.

As for the material, the volume covers Books I and II of Euclid's 13 books of the elements. The first book introduces a set of definitions and goes on characterizing triangles. It, even, proves the Pythagorean theorem. This proof was a bit difficult, a simpler proof can be found else where, but, after all, it is amazing how mathematicians could have solved such a problem thousands of years ago.

He introduced the famous constructions of straight edge and a compass, he would construct an isosceles triangle starting from a given segment by merely using a straight edge and a compass. Later on, Galois studied this construction in his famous Galois theory (try Artin's Galois theory, although I do not guarantee it).

The second books deals with areas of triangles and rectangles, and Euclid's notation shows it incompetence when he uses the same name for two different things. For in the first book he used to say that two triangles are equal if all their angles and sides are equal, but in the second book he would define two triangles to be equal if they had the same area!

All in all, I enjoyed the book, and would have enjoyed it more if not for the drawbacks.

And this book, being a classic, was on top of my demanded books list until I bought it around 1998. As usual with these books, I postponed its reading until the new millennium. But when I read it I was very disappointed.

The material of this book is one of the most beautiful afforded by a mathematics book. It is very interesting, but, alas, it is written in a forbidding notation. I can understand high level math books in Algebra and Analysis, but this book confused me with words. Frankly, I do not see why a math book is supposed to explained in words after all this development of mathematics.

Unfortunately, most historian mathematicians disagree with my view. They see that writing the elements of Euclid (The first rigorous set of axioms and lemmas) in the modern notation is unfaithful to the original manuscript. Well, I have got no problem with that, but at least try to make it up to date so that people could go through it.

You see that I gave it 4 stars. Yes the material of the book was excellent, and it rather deserved 5 stars, but for this tedious presentation.

One other thing I hated a bout this volume was the introduction. It had taken about one third of the book, and after the definitions of the first book, there are notes on the definitions and postulates that take another third of the book. These notes are not all that easy and at a higher level than the postulates of Euclid, and I found them irrelevant. I do not understand here why did not the author, who made notes on the definitions, make a section explaining all the postulates in modern notation.

As for the material, the volume covers Books I and II of Euclid's 13 books of the elements. The first book introduces a set of definitions and goes on characterizing triangles. It, even, proves the Pythagorean theorem. This proof was a bit difficult, a simpler proof can be found else where, but, after all, it is amazing how mathematicians could have solved such a problem thousands of years ago.

He introduced the famous constructions of straight edge and a compass, he would construct an isosceles triangle starting from a given segment by merely using a straight edge and a compass. Later on, Galois studied this construction in his famous Galois theory (try Artin's Galois theory, although I do not guarantee it).

The second books deals with areas of triangles and rectangles, and Euclid's notation shows it incompetence when he uses the same name for two different things. For in the first book he used to say that two triangles are equal if all their angles and sides are equal, but in the second book he would define two triangles to be equal if they had the same area!

All in all, I enjoyed the book, and would have enjoyed it more if not for the drawbacks.

ByA customeron May 18, 1999

At the time of this writing, the sales summary points out "Vol. 1", but it does not point out that it is "Volume 1 of 3". Volume 1 provides a historical summary of work that followed _Elements_, along with a detailed translation of Book I and Book II. Heath includes bracketed references to justify each critical step of each proof. The text surrounding each Euclidean statement is detailed, but often very lengthy; at times, this detracts from the reading of the _Elements_ itself. This set is for the scholar of the history of _Elements_, and not the best source for a first-time reading of Euclid. Even with these minor quibbles, however, my copy of Volume I is a well-worn, beloved volume with frequently-annotated margins. All of the major "players" in the development of Geometry are detailed within, as well as their contributions.

I recommend it highly for any scholar that wishes to understand _Elements_ thoroughly, through a close reading of a detailed text.

I recommend it highly for any scholar that wishes to understand _Elements_ thoroughly, through a close reading of a detailed text.

0Comment*|*Was this review helpful to you?YesNoReport abuse#### There was a problem loading comments right now. Please try again later.

Please write at least one word

You must purchase at least one item from Amazon to post a comment

A problem occurred while submitting your comment. Please try again later.

bySir Isaac Newton Sir

$19.22

Unlimited FREE Two-Day Shipping, no minimum threshold and more.

Prime members enjoy FREE Two-Day Shipping on millions of eligible items with no minimum threshold.

Back to top

Get to Know Us | Make Money with Us | Amazon Payment Products | Let Us Help You |

|2 people found this helpful. Was this review helpful to you?YesNoReport abuse