CDN$ 16.82
FREE Shipping on orders over CDN$ 25.
Only 4 left in stock (more on the way).
Ships from and sold by Gift-wrap available.
Brain Trust: 93 Top Scien... has been added to your Cart
Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 2 images

Brain Trust: 93 Top Scientists Reveal Lab-Tested Secrets to Surfing, Dating, Dieting, Gambling, Growing Man-Eating Plants, and More! Paperback – Mar 6 2012

3.0 out of 5 stars 1 customer review

See all 2 formats and editions Hide other formats and editions
Amazon Price
New from Used from
Kindle Edition
"Please retry"
"Please retry"
CDN$ 16.82
CDN$ 8.18 CDN$ 0.01

Unlimited FREE Two-Day Shipping for Six Months When You Try Amazon Student
click to open popover

No Kindle device required. Download one of the Free Kindle apps to start reading Kindle books on your smartphone, tablet, and computer.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

Product Details

  • Paperback: 256 pages
  • Publisher: Three Rivers Press (March 6 2012)
  • Language: English
  • ISBN-10: 0307886131
  • ISBN-13: 978-0307886132
  • Product Dimensions: 13.2 x 1.4 x 20.3 cm
  • Shipping Weight: 213 g
  • Average Customer Review: 3.0 out of 5 stars 1 customer review
  • Amazon Bestsellers Rank: #429,005 in Books (See Top 100 in Books)
  •  Would you like to update product info, give feedback on images, or tell us about a lower price?

Product Description

About the Author

Garth Sundem is the bestselling author of Brain Candy, The Geeks' Guide to World Domination, and Geek Logik.  He and his wife live in Colorado with their two kids and a large Labrador.

Excerpt. © Reprinted by permission. All rights reserved.


Steven Pinker


“Imagine you’ve been pulled over by a police officer,” says Steven Pinker, Harvard psychologist, prolific author, and one of Britannica’s 100 Most Influential Scientists of All Time. In this case, you’d like to know if the relationship is adversarial or conspiratorial: in other words, you’d like to know if you can bribe the cop. But you can’t just come out and say it. “Instead, you start by talking about the weather,” says Pinker, “and then you mention that it must be difficult to get by on an officer’s salary.” You start with extremely indirect speech and with every step become slightly more direct. “And after each step, the police officer has the opportunity to accept or rebuff the overture,” says Pinker. If the police officer isn’t open to being bribed, he or she should cut you off at the weather, before you’ve incriminated yourself.

Pinker explains this in terms of game theory, with payoffs shown here:

It’s like trying to sleep with a coworker.

“The mistake of Clarence Thomas was to jump steps in this continuum,” says Pinker. Thomas brought up the subject of porn videos when he should’ve prepped that level of directness, perhaps by, “asking Anita Hill to call him by his first name, or by adopting a less formal style of speech.” Thomas went straight to the equivalent of handing the cop a fifty-dollar bill, dooming himself to a scandal and the closest Senate confirmation in a century.

So language must match the relationship. “This is what we call ‘tact,’ ” says Pinker. And when it doesn’t, it creates uncomfortable friction--it’s what drives the awkward comedy in a sketch posted to YouTube in which Irish comedian Dave Allen uses the terms “buddy,” “chum,” “friend,” and “mate” with strangers and thus comes off as tactlessly aggressive. This would be like me trying to speak Cockney rhyming slang in a London pub, or walking into a group of local surfers and saying, “Yo brahs--where you shreddin’ the swell today?” Language that oversteps the bounds of a relationship is in every way the equivalent of trying to hold hands with a stranger on the subway.

But what’s even cooler is this: “Not only does language reflect a relationship, but it can serve to create or change it,” says Pinker. And so if you can avoid overstepping in your slow evolution of indirect to direct language with a police officer or attractive coworker, not only can you discover the nature of the relationship, but you can pull the relationship along with it.

So make a script. Start with nearly innocuous comments that are almost certain to be taken as such (“It was nice to see you in the meeting today”). Then move ever so slowly toward the midground (“Wow, that’s a sexy haircut!”). Then move glacially toward the thinly veiled overture you’re trying to make (Pinker writes, “Would you like to come over sometime and see my etchings?”). Done tactfully and without overstepping, this language of closeness can create closeness.

Note that this entry doesn’t necessarily recommend bribing cops or sleeping with coworkers, mirroring a common ethical dilemma in science: just because you can doesn’t mean you should.



“If you overlay the CDC diabetes map with the NASA nighttime satellite map, there’s an almost perfect match,” says Satchin Panda, regulatory biology specialist at the Salk Institute. The more light in a region at night, the higher the incidence of diabetes. According to Panda, this is because your liver needs sleep. Actually, it’s not the sleep per se that your liver needs, but a defined period of fasting each day, which throughout humanity’s evolutionary history was the hours of darkness when you couldn’t really do much but snooze.

“We started out as diurnal,” says Panda, “but learning to control fire allowed us to get away from diurnal needs and into nocturnal space.” All of a sudden, we could spend all day hunting and still cook and eat the catch once the sun went down. Then with electricity and the industrial revolution, we went a step further--why make widgets during only twelve hours of daylight when you can flip on the lights and run the assembly line for twenty-four hours a day? Thus was shift work born.

“People who work at night have a 150 percent higher rate of metabolic disease,” says Panda. And with people in the United States now averaging more than 160 hours of TV viewing per month, “we have 100 to 120 million people who are social shift workers,” says Panda. Did you think the twinkling lights on the NASA nighttime map that align so evenly with the diabetes map were due to factory lights? Nope. They’re due in large part to the throbbing screens that stay on in American households long after dark. Led by the TV’s silver tongue, Americans have made the social decision to act like shift workers. “And this population is more at risk for every type of metabolic disease,” says Panda.

The first reason for this is obvious: If you’re awake more, you eat more. Panda points out that Americans consume 30 percent of their daily calories after eight o’clock at night. If there were a way to create a nighttime auditory map, you’d hear the roar of a great, collective munching in those same regions you see the light of TV screens.

But the effects of this nighttime munching go a step further than simply packing on extra pounds.

Let’s take a closer look at your liver. Among its many functions is storing excess calories as glycogen and then, when you’re starving, converting this glycogen into usable glucose. Actually, it’s the liver’s little autonomous mitochondria that do this, and like any population of millions of single-celled organisms, they’re constantly dying and dividing, which in the case of your liver generally maintains a constant population. And, generally, it’s at night, when their food processing duties are (or should be) decreased, that these mitochondria do their dividing.

“Our circadian clock separates functions throughout the day so that our organs stay healthy,” says Panda. Mitochondria don’t multitask well--if they work when they’re dividing, they’re much more prone to making faulty copies of their DNA. Over time, mutations creep in, and down that path lies all sorts of metabolic badness.

And the clock in your liver isn’t a sundial--it doesn’t simply monitor lightness and darkness and click through its organ functions based on time of day. Instead, “it gets information about time by when we eat,” says Panda. Your liver needs to know when you’ve taken your last bite of the evening so that it can tell mitochondria it’s safe to divide. “And if you eat all the time, the clock gets the clue too many times, it tries to adjust too many times, and it never knows when it’s breakfast,” says Panda.

Many millions of years precede electricity, and it’s this great chunk of time for which our bodies are optimized. Simply, evolution hasn’t had enough time to prepare us for nighttime work--our clock isn’t nearly nimble enough to flip its schedule to allow efficient night sleeping on the weekend, following day sleeping during the workweek (and instantly back again).

Panda explored this with mice. Mice who are given the ability to eat for only eight hours a day quickly adjust their habits to consume the same number of calories as mice that are allowed to eat for sixteen hours per day. So given an equal calorie count, you might not expect any health differences between eight-hour and sixteen-hour feeding mice. But eight-hour mice live longer. And everyone knows that mice given a high-fat diet gain weight, right? But Panda’s new work shows they don’t--not if they consume this high-fat diet in an eight-hour window.

“Look at one-hundred-year-olds around the world, across all different diets, and across all different professions, and you find one common denominator,” says Panda. “They always stick to a scheduled feeding pattern, and they always have an early dinner followed by a defined fasting time.”

So if you want to live long and prosper, don’t eat at night. If you want to lose weight on your current high-fat diet, eat your calories in an eight-hour window.

What’s the basis of our biological clock? Panda found that it’s cells in our eyes that express the photopigment melanopsin, which allows us to measure the intensity of ambient light. The more light, the more melanopsin is expressed, and the more awake our biological clock allows us to feel. An older person who has difficulty falling asleep at night may have perfect sight, but blindness to light intensity due to faulty production of melanopsin. Likewise, if you’re wide awake after a flight from Los Angeles to New York, you soon might be able to take a pill that shuts down melanopsin, allowing you to sleep when you get in.

A Swedish study of identical twins separated at birth found that lifestyle trumps genetics in determining how long people live. Writing about the study in the New York Times, Jane Brody describes the secrets of a long life as “the Three ‘R’s’ of resolution, resourcefulness, and resilience.” Extroversion, optimism, self-esteem, and strong ties to community help too.


Michel Maharbiz


“Humans can’t build tiny things that fly autonomously,” says Michel Maharbiz, electrical engineering and computer science guru at Berkeley. “As you scale things down a couple problems come up.” One is airflow: “Turbulence and optimal wing structure are different for a tiny flier than they are for an airplane. Small things fly more like a two-armed chopper, horizontally sweeping,” says Maharbiz, who’s extremely entertaining to chat with because he says things like “Mike Dickinson at Caltech is one smart mo-fo!” or “My entertainment in life is to build cool shit.”

And then there’s the power problem. “You can’t miniaturize the combustion engine enough,” says Maharbiz, “and lithium-ion batteries are ten to forty times less efficient than burning hydrocarbons.” To power a tiny flier, the power provided has to be worth the engine weight. Currently, it’s not.

Finally, we can’t build the actuator part of it, “the little muscles and skeletal components,” says Maharbiz. Again, at least not efficiently enough for its power to justify its weight.

So there you go. The answer to, Can we build tiny, flying spy-bots? is No, not yet.

But nature can.

“There’s tons of these things flying around,” says Maharbiz. “They eat for energy, and they’re great at miniaturizing flight systems.”

We call them bugs. And while we can’t build tiny flying robots, we’re getting better at collaborating with nature on tiny flying cyborgs.

Cyborg green June beetles, to be precise. (Which, as you’ll note, is pretty frickin’ sweet.) Guys like Maharbiz favor these beetles because the bugs are big enough to carry some gadgetry and small enough to do things like deploy as a swarm into a collapsed building to search for the biosignatures of survivors, or fly through combat areas gathering information without being blasted.

Here’s how it works.

First, Maharbiz implants a thin silver wire just behind the beetle’s eye into the flight control center of its brain. To it, he attaches a tiny battery repurposed from a cochlear implant. An electric pulse of about -1.5 V starts the beetle’s wings, and the same positive pulse stops them. (One can only imagine that a stronger pulse would transform a beetle into a firefly.)

Then the trick is steering.

“You can either pack a muscle full of force fibers, or tubes that suck up energy,” says Maharbiz, “so muscles can either be strong or fast, not both.” So to get the (fast) rate of wing strokes at the (strong) power needed to fly, evolution’s equipped beetles with a sweet little oscillator that allows them to pump their wing muscles once--hard!--and count on rebounding musculature to keep the wings pumping for another four beats. It’s like the rebound of a stick off a drumhead--one stroke for five beats, repeat as necessary for flight and/or the opening of the iconic 20th Century Fox fanfare.

What this means is that a beetle’s wings can only buzz at one speed--the oscillator rebounds at a fixed rate, so you can’t simply drive beetle wings faster or slower for increased or decreased thrust. Still, Maharbiz found that wires delivering pulses to these resonators could control the amplitude of wing beats. Both wires pulsing 10 Hz at ten beats per second for three seconds increases wing amplitude and makes the beetle gain altitude. The same pulse in only the right wing makes the beetle turn left--like paddling harder with the right oar of a rowboat. By uniformly throttling down the wing amplitude, you can land the beetle.

The cool part is that precision piloting isn’t needed here. “We don’t try to fly the beetle--we try to guide the beetle,” says Maharbiz. Nature remains the pilot, used for leveling to the horizon, powering the system, and all the other intricacies of flight currently lost to human engineers.

A quick online search returns video of the cyborg beetle in action as well as a pdf with the full specs for creating your own. Seriously.

Maharbiz writes, “When I dream of the future, I see machines built from what we would now call ‘living things’: tables that are derived from plant cell lines, which breathe your office air and use ambient light for energy to fix themselves or grow new parts; houses whose walls are alive and whose infrastructure hosts an ecology of organisms who perform tasks both microscopic and macroscopic; computational elements whose interfaces completely blur the line between cell and chip.”


Robert Bjork


The one hundred-ish skills in this book can help make you awesome. But your ability to put them to use is bound by one thing: your ability to learn. The more you can learn, the more awesome you can become. So consider this a keystone entry.

First, think about how you attack a pile of study material. “People tend to try to learn in blocks,” says Robert Bjork, Distinguished Professor of Psychology at UCLA, “mastering one thing before moving on to the next.” But instead he recommends interleaving, a strategy in which, for example, instead of spending an hour working on your tennis serve, you mix in a range of skills like backhands, volleys, overhead smashes, and footwork. “This creates a sense of difficulty,” says Bjork, “and people tend not to notice the immediate effects of learning.” Instead of making an appreciable leap forward with your serving ability after a session of focused practice, interleaving forces you to make nearly imperceptible steps forward with many skills. But over time, the sum of these small steps is much greater than the sum of the leaps you would have taken if you’d spent the same amount of time mastering each skill in its turn.

Customer Reviews

3.0 out of 5 stars
5 star
4 star
3 star
2 star
1 star
See the customer review
Share your thoughts with other customers

Top Customer Reviews

Format: Paperback
Wasn't really what I was looking for. I thought it would be more similar to Brain Candy.
Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse

Most Helpful Customer Reviews on (beta) 3.9 out of 5 stars 23 reviews
9 of 9 people found the following review helpful
5.0 out of 5 stars Super-readable short descriptions of fascinating science March 6 2012
By Cletus Bojangles - Published on
Format: Paperback
Garth Sundem has assembled a bunch of short, super-readable descriptions of discoveries in science, physics, economics, etc, as described by experts he interviewed. The book is so readable, I plowed through it in an afternoon! Topics covered range from hard science (like William Cook on the Traveling Salesman problem) to many about human behavior (like how to get a good price when you sell on ebay). The stick figure illustrations by the author really help illustrate the ideas being discussed. All in all, a fun read.
6 of 6 people found the following review helpful
5.0 out of 5 stars Informative Enjoyable But don't read this while you are doing something else unless you are a supertasker March 13 2012
By Shalom Freedman - Published on
Format: Paperback
This book will teach you to how to do better many things you already do, how to do things you never thought to do. It will provide a wide variety of expert information on all sorts of practical and not - so- practical activities. It may help you learn the importance of sleeping through the night ( Or rather having one considerable period in which you do not eat, and allow your liver to recharge properly) or the wisdom of not being a multi- tasker if you are not one of the two- percent of people who are super-taskers and succeed where most of us cannot. It will give you hints on how to induce a traffic cop not to give you a ticket or how to wisely approach the whole business of losing weight. It provides much information from experts in the field who also relate their personal experiences in regard to the question at hand. The book is entertaining and informative. It is of course part of the great wave of behavioral psychology books now teaching us how to think about, and do better many aspects of our life which went unstudied before.
Not necessary to chew and digest this all, but rather sample the most tasty bits a bit at a time.
4 of 4 people found the following review helpful
5.0 out of 5 stars Bite sized science factoids - great for dinner discussions! July 8 2012
By Pokin - Published on
Format: Kindle Edition Verified Purchase
Brain Trust is a collection of random bits of knowledge and surprising or interesting facts. From deciphering body language and spotting a liar to learning how to lose weight, bet in sports, or teach toddlers perfect pitch, the book covers a broad large range of science and social science topics. The addition of mini exercises at the end of some of the points makes it more interactive. Were you actually absorbing the point, or in passive book scanning mode?

I liked that each subject came in small digestable chunks (nothing was more than a couple pages long) so that you can just pick up the book in between tasks when you just had a couple minutes to spare. Every topic also has the original research or researcher cited (with web links where applicable) so you can do more reading if you were so inclined. It's also nice that the topics are spread out pretty randomly so you go from building flying cyborg beetles to learning how to learn.

Beyond interesting factoids (like how to grow giant man eating plants), there are many practical applications too (set a time limit on small decisions to avoid decision paralysis).

Overall, while many of the topics are covered in other books (if you read books like Freakanomics, etc.) there are just so many things covered that it's

a) worth the mini refreshers and
b) likely you will find something new and entertaining worth knowing

This is a good book if you're the type of person who likes to learn a little about a variety of subjects.
3 of 3 people found the following review helpful
5.0 out of 5 stars Brain Snacks July 26 2012
By Jonquille - Published on
Format: Paperback
Collect interesting internet social science articles.
Pick the better ones, and put them together with some "try it" puzzles.
Add an index.
Bind them in an easy to hold, inexpensive paper, easy to read font, paperback.

It makes an attractive read, without annoying distractions.
Sort of like a web surfers digest. [hmm... blog anyone?]

This book is like that, but better sourced?
Very enjoyable. Eclectic selection appeals.
2 of 2 people found the following review helpful
4.0 out of 5 stars Highly recommended by "the brain trust over at Political Calculations" March 13 2012
By Ironman - Published on
Format: Kindle Edition Verified Purchase
What if you had your own brain trust, where you knew that everyone in it was truly one of the top people in their lines of work? People who have devoted years to what they do, and because they have, could answer almost any question you might ask them. Wouldn't that be pretty cool?

It just so happens that Garth Sundem has assembled his own brain trust and asked them almost anything! The results of that effort have now been published in his new book "Brain Trust".

In it, Garth shares what he learned after asking some 93 scientists the secrets to things like how to surf better, how to grow a man-eating plant, how to go about bribing a police officer to get out of a ticket, and how to build a world-record paper airplane. Oh, and how to get a job, along with getting their dating and dieting tips!

And perhaps most intriguingly: which lotteries in the U.S. are worth playing and when are they worth playing!

You hear a lot about many of these kinds of things in the media every day, but what sets this book apart are the people who make up Garth Sundem's "Brain Trust". They're not just your ordinary, everyday, run-of-the-mill scientists and mathematicians, but Nobel prize winners and MacArthur "geniouses". People who have been awarded actual medals for really high-level science.

And they just happened to be willing to answer some of the crazier questions Garth Sundem was willing to ask them.

Highly recommended. You can tell anyone who asks you about that copy of the book you're carrying or that you're reading on your electronic reader that the "brain trust over at Political Calculations" said so!