CDN$ 68.87
  • List Price: CDN$ 83.99
  • You Save: CDN$ 15.12 (18%)
Only 8 left in stock (more on the way).
Ships from and sold by Gift-wrap available.
Concrete Mathematics: A F... has been added to your Cart
Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 3 images

Concrete Mathematics: A Foundation for Computer Science (2nd Edition) Hardcover – Feb 28 1994

4.4 out of 5 stars 25 customer reviews

See all 2 formats and editions Hide other formats and editions
Amazon Price
New from Used from
"Please retry"
CDN$ 68.87
CDN$ 65.55 CDN$ 97.75

Back to University 2016
Save on College Prep Essentials on Shop now
click to open popover

Special Offers and Product Promotions

  • Student Exclusive: Amazon Prime Student members save 10% on all textbook purchases. Enter code TEXT10 at checkout. Here's how (restrictions apply)

Frequently Bought Together

  • Concrete Mathematics: A Foundation for Computer Science (2nd Edition)
  • +
  • Introduction to Algorithms
  • +
  • Design Patterns: Elements of Reusable Object-Oriented Software
Total price: CDN$ 231.18
Buy the selected items together

No Kindle device required. Download one of the Free Kindle apps to start reading Kindle books on your smartphone, tablet, and computer.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

Product Details

  • Hardcover: 672 pages
  • Publisher: Addison-Wesley Professional; 2 edition (Feb. 28 1994)
  • Language: English
  • ISBN-10: 0201558025
  • ISBN-13: 978-0201558029
  • Product Dimensions: 19.3 x 4.1 x 23.9 cm
  • Shipping Weight: 1.4 Kg
  • Average Customer Review: 4.4 out of 5 stars 25 customer reviews
  • Amazon Bestsellers Rank: #34,433 in Books (See Top 100 in Books)
  •  Would you like to update product info, give feedback on images, or tell us about a lower price?

  • See Complete Table of Contents

Product Description

From the Inside Flap

This book is based on a course of the same name that has been taught annually at Stanford University since 1970. About fifty students have taken it each year juniors and seniors, but mostly graduate students - and alumni of these classes have begun to spawn similar courses elsewhere. Thus the time seems ripe to present the material to a wider audience (including sophomores).

It was dark and stormy decade when Concrete Mathematics was born. Long-held values were constantly being questioned during those turbulent years; college campuses were hotbeds of controversy. The college curriculum itself was challenged, and mathematics did not escape scrutiny. John Hammersley had just written a thought-provoking article "On the enfeeblement of mathematical skills by 'Modern Mathematics' and by similar soft intellectual trash in schools and universities" 176 ; other worried mathematicians 332 even asked, "Can mathematics be saved?" One of the present authors had embarked on a series of books called The Art of Computer Programming, and in writing the first volume he (DEK) had found that there were mathematical tools missing from his repertoire; the mathematics he needed for a thorough, well-grounded understanding of computer programs was quite different from what he'd learned as a mathematics major in college. So he introduced a new course, teaching what he wished somebody had taught him.

The course title "Concrete Mathematics" was originally intended as an antidote to "Abstract Mathematics," since concrete classical results were rapidly being swept out of the modern mathematical curriculum by a new wave of abstract ideas popularly called the "New Math." Abstract mathematics is a wonderful subject, and there's nothing wrong with it: It's beautiful, general, and useful. But its adherents had become deluded that the rest of mathematics was inferior and no longer worthy of attention. The goal of generalization had become so fashionable that a generation of mathematicians had become unable to relish beauty in the particular, to enjoy the challenge of solving quantitative problems, or to appreciate the value of technique. Abstract mathematics was becoming inbred and losing touch with reality; mathematical education needed a concrete counterweight in order to restore a healthy balance.

When DEK taught Concrete Mathematics at Stanford for the first time he explained the somewhat strange title by saying that it was his attempt to teach a math course that was hard instead of soft. He announced that, contrary to the expectations of some of his colleagues, he was not going to teach the Theory of Aggregates, not Stone's Embedding Theorem, nor even the Stone-Cech compactification. (Several students from the civil engineering department got up and quietly left the room.)

Although Concrete Mathematics began as a reaction against other trends, the main reasons for its existence were positive instead of negative. And as the course continued its popular place in the curriculum, its subject matter "solidified" and proved to be valuable in a variety of new applications. Meanwhile, independent confirmation for the appropriateness of the name came from another direction, when Z.A. Melzak published two volumes entitled Companion to Concrete Mathematics 267.

The material of concrete mathematics may seem at first to be a disparate bag of tricks, but practice makes it into a disciplined set of tools. Indeed, the techniques have an underlying unity and a strong appeal for many people. When another one of the authors (RLG) first taught the course in 1979, the students had such fun that they decided to hold a class reunion a year later.

But what exactly is Concrete Mathematics? It is a blend of continuous and discrete mathematics. More concretely, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. Once you, the reader, have learned the material in this book, all you will need is a cool head, a large sheet of paper, and fairly decent handwriting in order to evaluate horrendous-looking sums, to solve complex recurrence relations, and to discover subtle patterns in data. You will be so fluent in algebraic techniques that you will often find it easier to obtain exact results than to settle for approximate answers that are valid only in a limiting sense.

The major topics treated in this book include sums, recurrences, elementary number theory, binomial coefficients, generating functions, discrete probability, and asymptotic methods. The emphasis is on manipulative techniques rather than on existence theorems or combinatorial reasoning; the goal is for each reader to become as familiar with discrete operation (like the greatest integer function and finite summation) as a student of calculus is familiar with continuous operations (like the absolute-value function and infinite integration)

Notice that this list of topics is quite different from what is usually taught nowadays in undergraduate course entitled "Discrete Mathematics." Therefore the subject needs a distinctive name, and "Concrete Mathematics" has proved to be as suitable as another

The original textbook for Stanford's course on concrete mathematics was the "Mathematical Preliminaries" section in The Art of Computer Programming 207. But the presentation in those 110 pages is quite terse, so another author (OP) was inspired to draft a lengthy set of supplementary notes. The present book is an outgrowth of those notes; it is an expansion of, and a more leisurely introduction to, the material if Mathematical Preliminaries. Some of the more advanced parts have been omitted; on the other hand, several topics not found there have been included here so that the story will be complete

The authors have enjoyed putting this book together because the subject began to jell and to take on a life of its own before our eyes; this book almost seemed to write itself. Moreover, the somewhat unconventional approaches we have adopted in several places have seemed to fit together so well, after these years of experience, that we can't help feeling that this book is a kind of manifesto about our favorite way to do mathematics. So we think the book has turned out to be a tale of mathematical beauty and surprise, and we hope that our readers will share at least of the pleasure we had while writing it.

Since this book was born in a university setting, we have tried to capture the spirit of a contemporary classroom by adopting an informal style. Some people think that mathematics is a serious business that must always be cold and dry; but we think mathematics is fun, and we aren't ashamed to admit the fact. Why should a strict boundary line be drawn between work and play? Concrete mathematics is full of appealing patterns; the manipulations are not always easy, but the answers can be astonishingly attractive. The joy and sorrows of mathematical work are reflected explicitly in this book because they are part of our lives.

Students always know better than their teachers, so we have asked the first students of this material to contribute their frank opinions, as "graffiti" in the margins. Some of these marginal markings are merely corny, some are profound; some of them warn about ambiguities or obscurities, others are typical comments made by wise guys in the back row; some are positive, some are negative, some are zero. But they all are real indications of feelings that should make the text material easier to assimilate. (the inspiration for such marginal notes comes from a student handbook entitled Approaching Stanford, where the official university line is counterbalanced by the remarks of outgoing students. For example, Stanford says, "There are a few things you cannot miss in this amorphous .. what the h*** does that mean? Typical of the pseudo-intellectualism around her." Stanford: There is no end to the potential of a group of students living together." Graffito: "Stanford dorms are like zoos without a keeper."

The margins also include direct quotations from famous mathematicians of past generations, giving the actual words in which they announced some of their fundamental discoveries. Somehow it seems appropriate to mix the words of Leibniz, Euler, Gauss, and others with those of the people who will be continuing the work. Mathematics is an ongoing endeavor for people everywhere; many strands are being woven into one rich fabric.

This book contains more than 500 exercises, divided into six categories:

  1. Warmups are exercises that every reader should try to do when first reading the material.
  2. Basics are exercises to develop facts that are best learned by trying one's own derivation rather than by reading somebody else's.
  3. Homework exercises are problems intended to deepen an understanding of material in the current chapter.
  4. Exam problems typically involve ideas from two or more chapters simultaneously; they are generally intended for use in take-home exams (not for in-class exams under time pressure).
  5. Bonus problems go beyond what an average student of concrete mathematics is expected to handle while taking a course based on this book; they extend the text in interesting ways. Bonus problems go beyond what an average student of concrete mathematics is expected to handle while taking a course based on this book; they extend the text in interesting ways.
  6. Research problems may or may not be humanly solvable, but the ones presented here seen to be worth a try (without time pressure).

Answers to all the exercises appear in Appendix A, often with additional information about related results. (Of course the "answers" to research problems are incomplete; but even in these cases, partial results or hints are given that might prove to be helpful.) Readers are encouraged to look at the answers especially the answers to the warmup problems, but only after making a serious attempt to solve the problems without peeking.

We have tried in Appendix C to give proper credit to the sources of each exercise, since a great deal of creativity and/or luck often goes into the design of an instructive problem. Mathematicians have unfortunately developed a tradition of borrowing exercises without an acknowledgment; we believe that the opposite tradition, practiced for example books and magazines about chess (where names, dates, and location of original chess problems are routinely specified) is far superior. However, we have not been able to pin down the sources of many problems that have become part of the folklore. If any reader knows the origin of an exercise for which our citation is missing or inaccurate, we would be glad to learn the details so that we can correct the omission in subsequent editions of this book.

The typeface used for mathematics throughout this book is a new design by Hermann Zapf 227, commissioned by the American Mathematical Society and developed with the help of a committee that included B. Beeton, R.P. Boas. L.K. Durst, D. E. Knuth, P. Murdock, R.S. Palais, P Renz, E. Swanson, S.B. Whidden and W.B. Woolf. The underlying philosophy of Zapf's design is to capture the flavor of mathematics as it might be written by a mathematician with excellent handwriting. A handwritten rather than mechanical style is appropriate because people generally create mathematics with pen, pencil, or chalk. (For example, one of the trademarks of the new design is the symbol for zero, 'O', which is slightly pointed at the top because a handwritten zero rarely closes together smoothly when the curve returns to its starting point.) The letters are upright, not italic, so the subscripts, superscripts, and accents are more easily fitted with ordinary symbols. This new type of family has been named AMS Euler, after the great Swiss mathematician Leonhard Euler (1707-1783) who discovered so much of mathematics as we know it today. The alphabets include Euler Text, Euler Fraktur, and Euler Script Capitals, as well as Euler Greek and special symbols such as <p> and <N>. We are especially pleased to be able to inaugurate the Euler Family of typefaces in this book, because Leonhard Euler's spirit truly lives on every pare: Concrete mathematics is Eulerian mathematics.

The authors are extremely grateful to Andrei Broder, Ernst Mayr, Andrew Yao, and Frances Yao, who contributed greatly to this book during the years that they taught Concrete Mathematics at Stanford. Furthermore we offer 1024 thanks to the teaching assistants who creatively transcribed what took place in class each year and who helped to design the examination questions; their names are listed in Appendix C. This book, which is essentially a compendium of sixteen years' worth of lecture notes, would have been impossible without their first-rate work.

Many other people have helped to make this book a reality. For examples, we wish to commend the students at Brown, Columbia, CUNY, Princeton, Rice, and Stanford who contributed the choice of graffiti and helped to debug our first drafts. Our contacts at Addison-Wesley were especially efficient and helpful; in particular, we wish to thank our publisher (Peter Gordon), production supervisor (Bette Aaronson), designer (Roy Brown), and copy editor (Lyn Dupré). The National Science Foundation and the Office of Naval Research have given invaluable support. Cheryl Graham was tremendously helpful as we prepared the index. An above all, we wish to thank our wives (fan, Jill, and Amy) for their patience, support, encouragement, and ideas.

This second edition features a new Section 5.8, which describes some important ideas that Doron Zeilberger discovered shortly after the first edition went to press. Additional improvements to the first printing can also be found on almost every page.

We have tried to produce a perfect book, but we are imperfect authors. Therefore we solicit help in correcting any mistakes that we've made. A reward of $2.56 will gratefully be paid to the first finder if any error, whether it is mathematical, historical, or typographical.

Murray Hill, New Jersey - RLG
and Stanford California DEK May 1988 and October 1993


From the Back Cover

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline.

Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study.

Major topics include:

  • Sums
  • Recurrences
  • Integer functions
  • Elementary number theory
  • Binomial coefficients
  • Generating functions
  • Discrete probability
  • Asymptotic methods

This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

See all Product Description

What Other Items Do Customers Buy After Viewing This Item?

Customer Reviews

Top Customer Reviews

Format: Hardcover
What is "concrete" math, as opposed to other types of math? The authors explain that the title comes from the blending of CONtinuous and disCRETE math, two branches of math that many seem to like to keep asunder, though each occurs in the foundation of the other. The topics in the book, such as sums, generating functions, and number theory, are actually standard discrete math topics; however, the treatment in this text shows the inherent continuous (read: calculus) undergirding of the topics. Without calculus, generating functions would not have come to mind and their tremendous power could not be put to use in figuring out series.
The smart-aleck marginal notes notwithstanding, this is a serious math book for those who are willing to dot every i and cross every t. Unlike most math texts (esp. graduate math texts), nothing is omitted along the way. Notation is explained (=very= important), common pitfalls are pointed out (as opposed to the usual way students come across them -- by getting back bleeding exams), and what is important and what is =not= as important are indicated.
Still, I cannot leave the marginal notes unremarked; some are serious warnings to the reader. For example, in the introduction, one note remarks "I would advise the casual student to stay away from this course." Notes that advise one to skim, and there are a few, should be taken seriously. All the marginal notes come from the TAs who had to help with the text, and thus have a more nitty-gritty understanding of the difficulties students are likely to face. Still, there are plenty of puns and bad jokes to amuse the text-reader for hours: "The empty set is pointless," "But not Imbesselian," and "John .
Read more ›
7 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse
Format: Hardcover
I used this book while studying Combinatorics at the University of Warwick, a leading British institution for mathematicians. At the time, the book was a little bit overwhelming - Knuth doesn't waste any time in getting to the point of solving problems in the book. Thus, if you're the type of person who needs lots of worked examples, I would supplement this with another book, for example, Grimaldi's Discrete and Combinatorial Mathematics. But this book does belong on the bookshelf - it is a great reference, particularly because it prepares one to read The Art of Computer Programming, also by Knuth. TAOCP is the definitive series on computer science, respected by computer scientists everywhere. I guess the best way to describe Concrete Mathematics is that if you are a graduate student in CS, you should own this book. If you are a mathematically-oriented undergraduate, this book will make you really understand anything that your professors will throw at you. But, if you are not a math-lover, you will want a backup and a really nice professor :)
2 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse
By A Customer on July 29 2002
Format: Hardcover
This book is great. But many excercises are too hard for non-mathematically trained reader. I can solve almost all warm-up exercises without peeking the answer. But even few warm-up excercises are virtually research one. For example, see the exercise 2.1. The answer for this exercise is that there is no agreement about this. I think it means that there is no answer for this exercise. Sometimes even understanding an answer is very hard when you read an answer because you can't solve an exercise. This book contains answers for all exercises. But this book's exercises are MUCH HARDER than many other mathematic books which contain answers for only odd number(or even number) exercises.
You need a great inductive mathematical reasoning experience to read this book. If you finish this, you can omit the first 100 pages of TAOCP vol 1.
It would be nice if there is a solution book for this hard concrete book.
2 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse
Format: Hardcover
Lest others find this wonderful book as disappointing as the reviewer from Osan, Korea: note that "concrete" in the title is just meant in contrast to "abstract". But both concrete and abstract are adjectives intended only to describe different apporaches to *theoretical* math, as opposed to *applied* math, which addresses examples directly relevant to the real world (and thus is probably of more interest to engineers and their ilk). This *isn't* an applied math text. The difference between the concrete and abstract styles is that concrete math generally takes a "bottom up" tack, arising from specific given "concrete" entities, such as certain special functions, sums, sequences etc and tends to involve more derivation and calculation. In contrast typical abstract math is more "top down", proceeding, say, from axioms, perhaps even non-constructively, and tends to involve more reasoning and proving. If you dig the theoretical stuff, and like the concrete approach, this book is a treasure trove.
Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse
Format: Hardcover Verified Purchase
The definitive book on Computer Science - Wither or not you're seeking a job in industry or pursuing grad studies, this book will prepare you for any of the math thrown at you in full fledged Computer Science program (Summations, Proving Correctness, Asymptotic Running times, Series, etc).

The book is not written like your typical academic text book you see these days. It contains full solutions, in plain and concise English, and a lot of humorous footnotes by TA's and Students.

If you're a freshman or junior in a Computer Science program and just have done Calculus 1 and Discrete Math, you'll want to work through this if you want to masterfully analysis algorithms later on in your program.

Anyways, it's from the Legend himself - Knuth!
Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again.
Report abuse

Most recent customer reviews