CDN$ 123.32
  • List Price: CDN$ 141.34
  • You Save: CDN$ 18.02 (13%)
Only 6 left in stock (more on the way).
Ships from and sold by Gift-wrap available.
Post-Quantum Cryptography has been added to your Cart
Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 2 images

Post-Quantum Cryptography Hardcover – Nov 17 2008

See all 4 formats and editions Hide other formats and editions
Amazon Price
New from Used from
Kindle Edition
"Please retry"
"Please retry"
CDN$ 123.32
CDN$ 106.22 CDN$ 139.29

Unlimited FREE Two-Day Shipping for Six Months When You Try Amazon Student
click to open popover

No Kindle device required. Download one of the Free Kindle apps to start reading Kindle books on your smartphone, tablet, and computer.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

Product Details

  • Hardcover: 246 pages
  • Publisher: Springer; 2009 edition (Nov. 17 2008)
  • Language: English
  • ISBN-10: 3540887016
  • ISBN-13: 978-3540887010
  • Product Dimensions: 15.6 x 1.6 x 23.4 cm
  • Shipping Weight: 522 g
  • Average Customer Review: Be the first to review this item
  • Amazon Bestsellers Rank: #635,962 in Books (See Top 100 in Books)
  •  Would you like to update product info, give feedback on images, or tell us about a lower price?

  • See Complete Table of Contents

Product Description

From the Back Cover

Quantum computers will break today's most popular public-key cryptographic systems, including RSA, DSA, and ECDSA. This book introduces the reader to the next generation of cryptographic algorithms, the systems that resist quantum-computer attacks: in particular, post-quantum public-key encryption systems and post-quantum public-key signature systems. Leading experts have joined forces for the first time to explain the state of the art in quantum computing, hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. Mathematical foundations and implementation issues are included. This book is an essential resource for students and researchers who want to contribute to the field of post-quantum cryptography.

About the Author

Daniel J. Bernstein is a research professor in the Department of Computer Science at the University of Illinois at Chicago. Professor Bernstein has received a U.S. National
Science Foundation CAREER award, a Cyber Trust award, three more U.S.government grants, and a Sloan Research Fellowship for his research in computational number theory, cryptography, and computer security. He is the author of several dozen papers and two of the Internet's most popular server software packages, djbdns and qmail.

Johannes A. Buchmann is a Professor of Computer Science and Mathematics at the Technische Universität Darmstadt and an associate editor of the  Journal of Cryptology. He received the most prestigious award in science in Germany, the Leibniz Award of the German Science Foundation. He also received the Karl Heinz-Beckurts Award for  technology transfer. He is a member of the German Academy of Science and Engieneering.

Erik Dahmen is a PhD student in Prof. Buchmann's research group at the Technische Universität Darmstadt. He received his diploma degree in Mathematics from the Technische Universität Darmstadt in 2006. Erik Dahmen is the author of various research papers on hash-based cryptography.

Customer Reviews

There are no customer reviews yet on
5 star
4 star
3 star
2 star
1 star

Most Helpful Customer Reviews on (beta) 5.0 out of 5 stars 3 reviews
4 of 4 people found the following review helpful
5.0 out of 5 stars A very informative introduction to a relatively new field. March 7 2011
By Theodore D. Huffmire - Published on
Format: Hardcover Verified Purchase
This book is a very informative introduction to the relatively new field of post-quantum cryptography, going into technical depth. Having some background in cryptography is very helpful for understanding the material. D.J. Bernstein has developed the eBACS framework for benchmarking ciphers, e.g., those involved in the NIST competition for SHA-3, and his writing is very clear. The chapters of the book are individual contributions by a variety of authors. It would be helpful to include source code in the next edition, or to have a companion website with source code of these alternative ciphers, such as hash-based cryptography, so that we can try them out on our computers.
3 of 4 people found the following review helpful
5.0 out of 5 stars Who the heck would pay $90 for a 240 page book? Aug. 29 2012
By Let's Compare Options Preptorial - Published on
Format: Paperback Verified Purchase
When you look at some of the most expensive books on Amazon, they are usually proceedings of conferences on very narrow topics that contain state of the art information on that niche. Often they are also published by Springer!

This little gem is somewhat of an exception. It is NOT a conference piece, but does use individual, expert authors to write each article, and each article DOES have numerous pages of supporting research papers, albeit mostly from the late 1990s and early 2000's.

Since "quantum computing" (QC) (a theoretical field, since quantum computers probably won't be actually built for at least 10 years or more) is applied to the hardness of encryption schemes in this book, you've got to add another 15 to 20 years to actually "assume" that QC can break a block cipher or hash table that's presently (relatively) intractable to classical computing. This is because cryptanalysts can't "prove" a negative-- that this or that system can or can't be broken by QC-- except by watching the research results of penetration trial, error and research.

I mean, practically, DES, and even relatively high rounds of AES, have already been broken with classical computing! This has taken over 30 years in the case of DES, and speculation in this volume is that QC will greatly speed up this process. That's the bottom line: this is an outstanding book of speculation-- looking at where QC is and isn't effective via theoretical QC algorithms alone (given no quantum machines to try them on yet). Most of this speculation will be irrelevant when and if real superpositioning machines are built. The interesting thing about cryptography is that the non deterministic probability cloud results of QC become deterministic-- because we either break the cipher or don't!

The math in this volume is grad to post grad, and although most of the symbology is in cryptography diagrammatic and equation form, the underlying subjects (which are not shown mathematically, but referred to the underlying research articles) do include the most advanced math behind state of the art crypto such as lattices, HSP, Factoring and discrete logs, linear algebra, Pell's equation, Graph isomorphism, and advanced analytic geometry, including elliptical encryption algorithms.

So, who should buy this book? The marketing material says "students" but that would mean, in my estimate, an advanced grad student specializing in QC. If you're a researcher, the bibliographies themselves might be worth the steep price of this small volume, but realize that these are 2003, not 2013 articles.

On the "get it" side-- there are very few (like, none?) treatments of this topic in book form, so if you're into saving time and don't do a lot of article reading, the web sites mentioned in the bibs are being kept up to date, and for that reason alone, you won't go wrong investing in this collection of articles. Just go in realizing that most of what's being written here is highly speculative due to the nature of crypto itself, which relies on researchers and hackers to let us know what is and isn't hard, not "proofs." The "truth" behind the speculation in this book is 25 to 30 years out. If you can live with that, enjoy this little technical journey across many aspects of QC as applied to Cryptography, with theoretical QC algorithms that have no machines to run on today.

If you're relatively new to Crypto, don't forget the industry analogy that good crypto is like putting a vault door on a tent-- hackers look for the weakest link, and this holds with or without QC. The average script kiddie, or even professional perp (possibly NOT including terrorist nations, or Moscow University), won't have access to QC in most of our lifetimes, but that doesn't mean that other areas of the tent aren't fair game! The authors recommend that we start NOW to prepare for QC, since crypto systems take a long time to develop and can last a long time, but I'm not sure that "securing" with speculative systems like lattices, that don't yet have practical implementations, is any more possible than actually breaking a hard math construct with QC.

For a good overview of Quantum Computing, if you are up on your linear algebra, check out: Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation). If you need a great review OF linear algebra prior to taking on QC, check out the high cost/value ratio of: Linear Algebra.
1 of 1 people found the following review helpful
5.0 out of 5 stars Good, solid book. Aug. 30 2010
By J. King - Published on
Format: Hardcover Verified Purchase
Good, solid book. Used it in a difficult course I took.

It's been a while, so I don't remember specifics -- but it provides an detailed overview of the various potential contenders for cryptography (public key and digital signatures) in a "post-quantum" world where traditional mechanisms like RSA and similar, are broken.

This is [hopefully obviously!] for people involved in the field of Cryptography only, and I wouldn't consider it 'easy bedtime reading' unless you are Bernstein himself! (Or Bruce Schneier, or...)

In short: recommended for cryptology/mathematics students!