Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See this image

Power System Analysis & Design, SI Version Paperback – Apr 7 2011

4.0 out of 5 stars 1 customer review

See all formats and editions Hide other formats and editions
Amazon Price
New from Used from
CDN$ 48.00 CDN$ 55.00

There is a newer edition of this item:

Don't Push the Button: A Christmas Adventure

click to open popover

What other items do customers buy after viewing this item?

No Kindle device required. Download one of the Free Kindle apps to start reading Kindle books on your smartphone, tablet, and computer.

  • Apple
  • Android
  • Windows Phone
  • Android

To get the free app, enter your mobile phone number.

Product details

  • Paperback: 782 pages
  • Publisher: Thomson-Engineering (Nels; 5 edition (April 7 2011)
  • Language: English
  • ISBN-10: 1111425795
  • ISBN-13: 978-1111425791
  • Product Dimensions: 18.8 x 3 x 23.1 cm
  • Shipping Weight: 1.2 Kg
  • Average Customer Review: 4.0 out of 5 stars 1 customer review
  • Amazon Bestsellers Rank: #336,083 in Books (See Top 100 in Books)
  • Would you like to tell us about a lower price?
    If you are a seller for this product, would you like to suggest updates through seller support?

  • See Complete Table of Contents

Product description


1. INTRODUCTION. Case Study: The Future Beckons. History of Electric Power Systems. Present and Future Trends. Electric Utility Industry Structure. Computers in Power System Engineering. PowerWorld Simulator. 2. FUNDAMENTALS. Case Study: Making Microgrids Work. Phasors. Instantaneous Power in Single-Phase ac Circuits. Complex Power. Network Equations. Balanced Three-Phase Circuits. Power in Balanced Three-Phase Circuits. Advantages of Balanced Three-Phase vs. Single-Phase Systems. 3. POWER TRANSFORMERS. Case Study: PJM Manages Aging Transformer Fleet. The Ideal Transformer. Equivalent Circuits for Practical Transformers. The Per-Unit System. Three-Phase Transformer Connections and Phase Shift. Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers. Three-Winding Transformers. Autotransformers. Transformers with Off-Nominal Turns Ratios. 4. TRANSMISSION-LINE PARAMETERS. Case Study: Transmission Line Conductor Design Comes of Age. Case Study: Six Utilities Share Their Perspectives on Insulators. Resistance. Conductance. Inductance: Solid Cylindrical Conductor. Inductance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing. Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors. Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return. Electric Field and Voltage: Solid Cylindrical Conductor. Capacitance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing. Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors. Shunt Admittances: Lines with Neutral Conductors and Earth Return. Electric Field Strength at Conductor Surfaces and at Ground Level. Parallel Circuit Three-Phase Lines. 5. TRANSMISSION LINES: STEADY-STATE OPERATION. Case Study: The ABC's of HVDC Transmission Technologies. Medium and Short Line Approximations. Transmission-Line Differential Equations. Equivalent d Circuit. Lossless Lines. Maximum Power Flow. Line Loadability. Reactive Compensation Techniques. 6. POWER FLOWS. Case Study: Visualizing the Electric Grid. Direct Solutions to Linear Algebraic Equations: Gauss Elimination. Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss-Seidel. Iterative Solutions to nonlinear Algebraic Equations: Newton-Raphson. The Power-Flow Problem. Power-Flow Solution by Gauss-Seidel. Power-Flow Solution by Newton-Raphson. Control of Power Flow. Sparsity Techniques. Fast Decoupled Power Flow. Design Projects. 7. SYMMETRICAL FAULTS. Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems. Series R-L Circuit Transients. Three-Phase Short Circuit - Unloaded Synchronous Machine. Power System Three-Phase Short Circuits. Bus Impedance Matrix. Circuit Breaker and Fuse Selection. Design Project. 8. SYMMETRICAL COMPONENTS. Case Study: Circuit Breakers Go High Voltage. Definition of Symmetrical Components. Sequence Networks of Impedance Loads. Sequence Networks of Series Impedances. Sequence Networks of Three-Phase Lines. Sequence Networks of Rotating Machines. Per-Unit Sequence Models of Three-Phase Two-Winding Transformers. Per-Unit Sequence Models of Three-Phase Three-Winding Transformers. Power in Sequence Networks. 9. UNSYMMETRICAL FAULTS. Case Study: Fires at U.S. Utilities. System Representation. Single Line-to-Ground Fault. Line-to-Line Fault. Double Line-to-Ground Fault. Sequence Bus Impedance Matrices. Design Projects. 10. SYSTEM PROTECTION. Case Study: The Future of Power Transmission. System Protection Components. Instrument Transformers. Overcurrent Relays. Radial System Protection. Reclosers and Fuses. Directional Relays. Protection of Two-Source System with Directional Relays. Zones of Protection. Line Protection with Impedance (Distance) Relays. Differential Relays. Bus Protection with Differential Relays. Transformer Protection with Differential Relays. Pilot Relaying. Digital Relaying. 11. TRANSIENT STABILITY. Case Study: Causes of the August 14 Blackout. Case Study: Real-Time Dynamic Security Assessment: Fast Simulation and Modeling Applied to Emergency Outage Security of the Electric Grid. The Swing Equation. Simplified Synchronous Machine Model and System Equivalents. The Equal-Area Criterion. Numerical Integration of the Swing Equation. Multimachine Stability. Design Methods for Improving Transient Stability. 12. POWER SYSTEM CONTROLS. Case Study: Transmission System Planning: The Old World Meets the New. Case Study: Overcoming Restoration Challenges Associated with Major Power System Disturbances: Restoration from Cascading Failures. Generator-Voltage Control. Turbine-Governor Control. Load-Frequency Control. Economic Dispatch. Optimal Power Flow. 13. TRANSMISSION LINES: TRANSIENT OPERATION. Case Study: VariSTAR(R) Type AZE Surge Arresters. Case Study: Change in the Air. Traveling Waves on Single-Phase Lossless Lines. Boundary Conditions for Single-Phase Lossless Lines. Bewley Lattice Diagram. Discrete-Time Models of Single-Phase Lossless Lines and Lumped RLC Elements. Lossy Lines. Multiconductor Lines. Power System Overvoltages. Insulation Coordination. 14. POWER DISTRIBUTION. Case Study: The Path of the Smart Grid. Primary Distribution. Secondary Distribution. Distribution Software. Distribution Reliability. Distribution Automation. Smart Grid. APPENDIX. INDEX.

About the Author

A Ph.D. from MIT, J. Duncan Glover is President and Principal Engineer at Failure Electrical, LLC. He was a Principal Engineer at Exponent Failure Analysis Associates and a tenured Associate Professor in the Electrical and Computer Engineering Department of Northeastern University. He has held several engineering positions with companies, including the International Engineering Company and the American Electric Power Service Corporation. Dr. Glover specializes in issues pertaining to electrical engineering, particularly as they relate to failure analysis of electrical systems, subsystems, and components, including causes of electrical fires.

Customer reviews

Share your thoughts with other customers
See all 1 customer reviews

Top customer reviews

on March 30, 2017
Format: Paperback|Verified Purchase
0Comment|Was this review helpful to you? Report abuse

Where's My Stuff?

Delivery & Returns

Need Help?